Commodity-based
Scalable Visualization

Constantine Pavlakos, Sandia National Laboratories
Randall Frank, Lawrence Livermore National Laboratory
Allen McPherson, Los Alamos National Laboratory
Greg Humphreys Stanford University
Matthew Eldridge, Stanford University
Adam Finkelstein, Princeton University
Alan Heirich, Compaq Computer Corporation

Sandia
National . ~
Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Z 0 0 1 EXPLORE INTERACTION
for the United States Department of Energy under contract DE-AC04-94AL85000. AND DIGITAL IMAGES

Commodity-based
Scalable Visualization

Introduction
Parallel Rendering Overview

Commodity-based Graphics Cluster Components and Clustering
Issues
e 3D Graphics HW, Interconnects, etc.

* Advanced Displays

Overview of Existing Systems and Current Results
 DOE/ASCI-lab Efforts

e Stanford’s Multi-Graphics Efforts

* Princeton’s Scalable Display Efforts

e Compaq’s Compositing Network
An Open-Source, Parallel Rendering API Effort. ~
Closing Remarks 2 001 coione wreracrion

AND DIGITAL IMAGES

Commodity-based
Scalable Visualization

Introduction

Constantine “Dino” Pavlakos
Sandia National Laboratories

The ASCI Program

ASCI - Accelerated Strategic Computing Initiative
DOE Program

Part of nuclear Stockpile Stewardship Program

Ensure continuing safety, performance, and reliability of
nuclear stockpile without testing

By providing unprecedented capability for simulation and
modeling to support needed confidence levels

VIEWS - Visual Interactive Environment for Weapons Simulation
e ASCI sub-program element

* Provides enabling technologies and infrastructure for data
management and visualization

o Enable ccsee and UnderStand” 2 0 0 1EXPLORE INTERACTION

AND DIGITAL IMAGES

Virtual Experiments

eFull-System
Simulations
Complex
eHigh-Fidelity
«Extremely
large data

Shock Physics
Calculation, Re-
entry Body Impact

2001,

Intricate Detail

Simulation of Richtmyer-Meshkov Instability.

Two gases, which are initially separated by
membrane pushed against wire mesh, are
subjected to Mach 1.5 shock.

ASCI SST Machine
960 nodes.

Visualization by M. Duchaineau, J. Hobson, D. Schikore,
LLNL

Very late time non-linear development of an unstable shocked
interface between two fluids. The density isosurface shown was
extracted and rendered from a 73.5 million cell AMR mesh.

Image: Bob Kares/Jamie Painter, LANL

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

ASCI Computation:
One TeraFLOP and beyond ...

Mountain
Blue

«3 TeraOps or more at each
ASCI Lab now (thousands of
processors)

«10 TeraOps at LLNL (*White”)

«30 TeraOps machine
announced for LANL

100 TeraOps in 2004

100 TFLOPS - Sizing the Problem

Structured

Unstructured

Compute
Platform

1 TFlop

10 Tflop

100 Tflop

1 TFlop

10 Tflop

100 Tflop

Number of
Cells

300
Million

1.5
Billion

7.5
Billion

100
Million

500
Million

2.5
Billion

Memory

300 GB

1.8 TB

10.5TB

160GB

800GB

6.0TB

Single
Timestep

53GB

324GB

1.9TB

28GB

140GB

950GB

Compressed
100 Step
Database

0.352TB

2.2TB

12.8TB

0.280TB

2.8TB

19 TB

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Database Size & Transfer

One TFLOP | 100 TLFOP

Speed Database Database
Channel (Mbytes/sec)| (1qyur) (hours)

Standard Ethernet 0.5

ATM O/C-3 13 7.5

ATM O/C-12 50 2.0

100 Base T Ethernet 10 9.8

Gigabit Ethernet 1.0 53

1 TeraFLOP compressed database 0.350 Terabytes - 100 DVD or 540 CD

100 TeraFLOP compressed database 19.0 Terabytes - 5,400 DVD or 29,300 CD

Z 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Design/Analysis Cycle

’ i) Designer/Analyst

Improved
Understanding

Computer-aided
Analysis

v %

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

ASCI/VIEWS is pushing out in
Key Technology Areas

Data Handling/Services
*User Interfaces and Visualization/Interaction Environments
Intelligent/Hierarchical/Distributed Data Exploration

*Distance Visualization

*Displays and Resolution

*Scalable Visualization/Rendering

ASCI Visualization Needs

+ASCI needs

about 1000 times

the performance
of today’s high
end rendering
engines in 2004
(unaffordable)

«Today’s high
end systems are
not designed to
scale beyond a
modest number
of pipes

Today’s High-end
Technology

2004 Needs

Surface Rendering

~2.5 Million polygons
per second per
graphics pipe

20 Billion polygons
per second (aggregate)

Pixel Fill Rate

~.1 Gpixel per raster
manager

200 Gpixel (aggregate)

Display Resolution

16 Mpixel
(4K x 4K)

64 Mpixel
(8K x 8K)

Today’s performance figures based on
experiences with ASCI-lab applications.

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Graphics Platforms

| Workstation

()]
et}
©
T 5
2s
.:8
QOwm
T B
c >
O O
x g
CU’
OCD
D
P
o
al

[
1999 2001 2004
3 10 100

Tflops Tflops Tflops . -
Years/Compute Performance 2001
EXPLORE INTERACTION

AND DIGITAL IMAGES

Clustering PC Graphics Cards -
A Promising Approach

Price / Performance

Technology - Leverages a large industry ... games!

Future - Strong, exploding market.

Practical ??? - Unknown. Many technical problems to
be solved such as compositing, 1/0, image quality,
and efficiency to name a few.

Parallel Graphics:
Scalability
and

Communication

Matthew Eldridge

Stanford University

Why Scalable Graphics?

Demanding applications
e Scientific visualization

e Photorealistic rendering

e Virtual reality

e Large-scale displays

Massive parallelism
e Billion transistor chips

Scalability is a time machine
 Build bigger machines now from commodity parts

Scalability and Communication

Scalability

* Design a single component (graphics pipeline) and
replicate it to increase performance

Communication

e Connects pipelines, allowing parallel work to be
load balanced

Graphics Pipeline

Application

Geometry

Rasterization

=

Application

Command

Geometry

Rasterization

Texture

Fragment

Display

Measuring Performance

Application

Command

Geometry

Rasterization

Texture

Fragment

Display

Input Rate

Triangle Rate

Pixel Rate

Texture Memory

Display Resolution

Sources of Parallelism

Task parallelism
e Graphics pipeline

Data (primitive) parallelism
e Object(Geometry)-parallel
e |Image-parallel

Sorting Taxonomy

A Sorting Classification of Parallel Rendering,
Molnar, Cox, Ellsworth, Fuchs

Distribution, Sorting, Routing Taxonomy

Communication in Parallel Graphics Systems,
Eldridge (to appear)

Communication (Sorting) Taxonomy

Application
Command > Sort-First

Geometry

<+— Sort-Middle

Rasterization

Texture > Sort-Last Fragment

Fragment

<— Sort-Last Image Composition

Display

Communication Taxonomy (cont.)

Load balancing
e Primitive work varies greatly

e High spatial locality over short periods

— Balance redundant work (overlap) against load
balance

Communication
e Sorting: Object - Image
e Distribution: Object - Object
e Routing: Image - Image
* Broadcast has cost proportional to parallelism

Communication Requirements

T

60 Mcmd/s

y

A

20 Mvert/s

400 Mpix/s

4
A

120 Mpix/s
\

0.0-1.7 GB/s

1.1-2.1 GB/s

0.7-1.7 GB/s

8.0-17.6 GB/s

4.0 GB/s

0.5-0.9 GB/s

Application

\ 4

Command

I

Geometry

\ 4

Rasterization

I

Texture

\ 4

Fragment

'

Display

0.0-1.7 GB/s

=

Display
Lists

2.0-16.0 GB/s

4)

Texture
Memory
_ J

4)

Framebuffer

\. J

1.6-6.4 GB/s

SGI InfiniteReality

{ Geometry
: Board

Host System Bus

Host Interface Processol'

v

Geometry Distributor

v =

v v

Geometry, Geometry,
:| Engine Engine

Geometry, Geometry,

Engine Engine

Vertex Bus

' vy ¥

v v |

Geometry-Raster FIFO

Fragment Generato

Fragment Generato

Fragment Generato

Fragment Generato

Raster Memory Board

Raster Memory Board

Raster Memory Board

Raster Memory Board

Image Parallel

Interleave — Broadcast Tiles — Point-to-Point

Sort-Middle Interleaved

App
v

App
v

Cmd
v

Geom

Cmd
v

Geom

Rast
v

Tex

Rast
v

v

Tex

Frag

v

Frag

Disp

#

Disp

#4—

J

Broadcast communication does
not scale, but supports ordering

Finely interleaved screen tiling
insures excellent load balance,
incurs broadcast communication

SG/ Graphics Workstations: RealityEngine, InfiniteReality

Sort-Middle Interleaved Results

Marching cubes
e Broadcast of small primitives
limits performance

e Can build to target max
parallelism (4 to 8-way)

Volume rendering
e Large primitives scale well

e Texture locality limits
scalability

1816 32 64 e Duplicated textures
pipelines

Sort-Middle Tiled

App
v

Cmd
v

App
v

Cmd
v

Geom

Geom

#4—

Rast
v

Point-to-point communication
scales

Tex

Rast
v

v

Tex

Frag

v

Frag

Coarse tiling incurs temporal
load imbalance when
rasterization limited

Disp

#

Disp

UNC PixelPlanes, Stanford Argus

The Overlap Factor

W

o= [

Molnar-Eyles Formula

The Overlap Factor

150 -

100 -

Overlap factor
S

o
|

128 64 32 16 8

Tile dimensions

Quake
~- Flight
- Studio
- Cylhead
-~ Head

Load Balancing: Rasterization

o Large tiles: few tasks,
greater variation in
work

— bad load balance

e Medium tiles: more
tasks, low overlap

— good load balance

e Small tiles: high
overlap/more
communication

— best load balance but
redundant work

Temporal Load Imbalance

Sort-Last Fragment

App
v

App
v

Cmd
v

Cmd
v

Geom

Geom

v

v

Rast
v

Rast
v

Tex

#V

Frag

Frag

#

Disp

Disp

Exposes rasterization /load
imbalance to application

Point-to-point communication
scales

~

Finely interleaved screen tiling
insures excellent load balance

Kubota Denali, E&S Freedom 3000

Sort-Last Image Composition

App
v

App
v

Cmd
v

Cmd
v

Geom

Geom

v

v

Rast
v

Rast
v

Tex

Tex

v

v

Frag

Frag

#

Disp

Disp

/

Exposes rasterization /load
imbalance to application

\/

Point-to-point ring interconnect
| scales, sort after fragment

processing /loses ordering

eRequiresmore
bandwidththan SL-
Fragment, may be more
readily built

eMaps well onto clusters

UNC/HP PixelFlow, Aizu VC-1, Stanford Lightning-2

Object Parallel

Sort-First

App
v
Cmd

Geom
v

Rast
v

Tex
v

Frag

Disp

App
v

Cmd

Geom

v

Rast
v

Tex

v

Frag

#

DIN»

J

Point-to-point communication
scales

Coarse tiling incurs temporal
load imbalance

eMatches capabilities of
a single graphics card

eMaps well onto clusters
with multiple displays

Princeton Display Wall, Stanford WireGL

Sort-Everywhere: Pomegranate

App
v

App
v

Cmd
v

Geom

Cmd
v

Geom

ﬁ

Rast
v

Rast
v

Tex

Tex

Architecture Comparison

Rasterization balanced

Scalable communication

Temporal load balance
Ordered

Summary

Graphics supercomputers (e.g. SGI IR/RM) not
inherently scalable

Clusters with commodity graphics cards
inexpensive and potentially scalable

Sorting/Routing/Distribution taxonomy

Most promising short-term algorithms
e Sort-first for tiled displays

e Sort-last with fast network (special network)

 Sort-first tiled with image reshuffle

Parallel APIs critical for scalability

Commodity-based Scalable
Visualization: Graphics
Cluster Components

Randall Frank

Lawrence Livermore National
Laboratory

Scalable Rendering Clusters

What makes a scalable rendering cluster unique?
e Generation of graphical primitives
e Graphics computation: primitive extraction/computation

e Multiple rendering engines

e Video displays

e Routing of video tiles
e Aggregation of multiple rendering engines

e Interactivity (not a render-farm!)
e Real-time imagery

e Interaction devices, human in the loop

¢ |/0 demands

 Access patterns/performance requirements

SIGGRAPH 2001

Graphics Cluster Anatomy: The Clustej

Start with a basic computational cluster
e COTS computational nodes

e High-speed interconnect
e Gigabit Ethernet, Myrinet, ServerNet I, Quadrics,...

PC

PC

PC

PC

PC

Network Switch

PC

PC

PC

SIGGRAPH 2001

Graphics Cluster Anatomy: Rendering

Add multiple rendering resources
e Software rendering (mesa, custom, ...)

e Hardware rendering cards
* nVidia, ATI, 3dfx, intense3d, ...

PC | gfx

PC | gfx

PC | gfx

PC | gfx

Network Switch

PC | gfx

PC | gfx

PC | gfx

PC | gfx

SIGGRAPH 2001

Graphics Cluster Anatomy: Displays

Attach one or more displays

e Direct display
e Tiled displays

e Composite dis

monitors
(PowerWalls)

dlays: M renderers, N displays

PC

Video
Switch

gfx

PC

gfx

PC

PC

gfx
gfx

PC

Network Switch

gfx

PC

gfx

PC

=
Q
S
g7
afx 2
o

PC

gfx

SIGGRAPH 2001

Graphics Cluster Anatomy: Displays

Advanced layouts
e Combinations of tiling and compositing

SIGGRAPH 2001 rjf, Page 6

Network Switch

IBM Bertha (3840x2400)

PC Graphics Cards:What are they?
PCl and AGP commodity graphics cards

e PC architectures
e Intel and Alpha CPUs
e Common 3D Graphics APIs: OpenGL/DirectX

Why are we interested?

e Large numbers of cards - low cost

» Games + fast PC hardware - speed

e Graphics leadership

Broad categories
e Consumer - Games, Media playback

* Professional - CAD, Media generation

SIGGRAPH 2001

PC Cards: Consumer

Consumer: nVidia, ATIl, 3DfxMatrox

* Pros

* High fill rates (400-1000Mpixels)

e Hardware T&L (8-25Mtris) in most recent versions

e Innovations: cube maps, texture combiners, vertex programs
» Cheap (<$400), price sensitive/competitive market

e Cons

e Driven by games
— OpenGL can be a secondary consideration
— Poor line drawing rates/quality
— Windowing issues
— Readback and buffer access issues
e Difficult to achieve “ultimate” performance

 Bit depth issues - good enough quality

— Screen and pipeline (e.g. Texture compression)
SIGGRAPH 2001

nVidia GeForce 2

PC Cards: Professional

Professional: HP, IBM, 3DLabs/Intense3bhyVidia?

* Pros

e Full accelerated OpenGL 1.2: 3D texture support
* Finer attention to OpenGL detail
e Deeper intermediate computations
* Non-game features
— Higher line drawing performance
— Larger memory
— Concurrent multi-bit depth/screen support
— Texture download performance

3DLabs Wildcat 11 5110

e Cons

e Lower fill rates (100-200Mpixels, application market bias)
e Fewer “innovative” extensions: Cube mapping
. (1More) Expensive

SIGGRAPH 200

PC Cards: What should you expect?

e Are they really Infinite Reality™ pipes?

e Basic rendering and raw speed: for most measures, yes

e Image quality/integrity: no, improving

* Flexible output options: no + DVI, improving, but no DG5-8s
e System bandwidths: maybe

e Easily rival present desktop workstation graphics

e Vendors are shipping them as options
e System stability issues (Read the game torture test reviews)

e High fill rates (Not high enough, thank the BSP tree)

e Future feature sets

e Exceed the IR in many ways, can be raw and complex
e Extensions: increase the difficulty in writing portable code

SIGGRAPH 2001 rif, Page 10

Graphics Cluster Anatomy: Issues

e System bus contention

e Simultaneous graphics AGP bandwidth and
interconnect PCI bandwidth

e Careful selection of motherboards (e.g. 1840)

e CPU options (number/speed)
» System overhead (e.g. TCP/IP stacks)

e Core system interconnect
e Bandwidth/latency

e Operating system selection
e Drivers/cluster management software

SIGGRAPH 2001 rif, Page 11

Aggregation: Tiling Vs Compositing

Goal: aggregate multiple rendering engines,
combining their outputs on a single display
to scale rendering “performance”

e 2D - "screen space”
e “Sort-first” rendering model

e Targets display scalability, higher frame rates

e 3D - “data space”
e “Sort-last” rendering model

» Targets large data scalability, higher polygon counts

SIGGRAPH 2001 rif, Page 12

Aggregation: Tiling

Tiling (2D decomposition in screen space)

Route portions of a final aggregate display to their
final destination with no overlap

Order independent

Destination determines
bandwidth

Graphics primitives may be r
moved, replicated or sorted
for load balancing

RGB data

SIGGRAPH 2001 rjf, Page 13

Aggregation:Compositing

Compositing(3D decomposition in data space)

3D blocks that are combined using classic graphics
operators (e.g. Z-buffering, alpha blending, etc)

Z, a, stencil enhanced pixels
Fixed 3D data decompositions '

(data need not move) ®j~ §>

Bandwidth exceeds that of

+

output display (3D vs 2D) f
Hierarchy trades bandwidth ® ’
for latency

Ordering may be critical

SIGGRAPH 2001 rif, Page 14

Implementing Aggregation

Compositiondatapathsare targets for specialized
parallel and asynchronous interconnects

e Basic operation
e Access the rendered imagery in digital form

e Route image fragments to composition mechanism

e Composite the fragments
<

» Display the results
o Approaches FVRAM '
e Reuse the cluster interconnect =

e Utilize digital video interface (DVI) output
» Use a dedicated interconnect

Network Switch

SIGGRAPH 2001 rif, Page 15

Reuse Core Cluster Interconnect

Compositingdtiling directly on the nodes
* Image or primitive exchange over the interconnect

» Readback of graphics card buffers (RGB,z,a,stencil)

» Flexible computation of aggregate imagery by host CPU

Current solutions
e Quadrics, Myrinet, ServerNet, GigE
* MPI, VIA, TCP/IP,GM e [

I SS u es 0s graphics card
* Processor overhead (second CPU?)

Network Switch

» Available bandwidth and latency

* Framebuffer readback performance
Myricom Myrinet 2000

SIGGRAPH 2001 rif, Page 16

Digital Video Interface Interconnect

Video based solutions
* |deally suited to tiling, DVI inputs/outputs

» Asynchronous operation, Avoids readback

Examples
e Stanford: Lightning-2, Texas: MetaBuffer

Issues
e Synchronization issues FVRAM_H_}
» Tagged imagery host graphics card
e Auxiliary signals
e Limitations of DVI signal and pixel formats

Compositor

e Limited compositing functions/ordering options

e Scalability of mesh architectures
SIGGRAPH 2001 rjf, Page 17

Dedicated Compositing Interconnect

Secondary interconnect dedicated tcompositing
* Need not be fully connected (data decomposition)

e Offload operation from host onto custom chips (FPGA)

» General pixel formats, programmable composition functions

* Interconnect switch for ordering

Examples |
e Compagq: Sepia, IBM: SGE vram |

Network

graphics card

Issues
* Framebuffer readback

e Additional host bus demand

e Bandwidth-pixel count/format

SIGGRAPH 2001 rif, Page 18

Composition and Interconnects: Issue

e Multi-pass rendering algorithms

* Framebuffer readback

e Performance and availability of graphics APIs
e Limitations of DVI: distance, pixel formats, bandwidth

» Graphics card bit depth limitations (e.g. global Z)

e Latency and ultimate framerate issues

e Protocol/API inefficiencies

 TCP/IP: High overhead, Jumbo frames
e Flexible/scalable software interfaces

e The “zoom” problem
e Data partitioning

SIGGRAPH 2001 rif, Page 19

Challenges in Building
Tiled Displays

Adam Finkelstein

Computer Science
Princeton University

Princeton Display Wall Team

George
Tzanetakis__

o

Stefanos sl Ik JP < Emil ZCcorg Sy
Damianakis ssa=DOU .Q,,__Pfé‘u“ﬁm Esslensien

l Clark A J

P
|,.

Allison Rudro _
Klein Samanta “ ¢ Co Finkelstein

-

Motivation

Why tiled displays?

Ideal for data visualization
e High resolution, human scale, broad dynamic range

Single display devices are inadequate
e Data is growing faster than resolution
e Compute power is growing faster than resolution
Tiling: Use multiple display devices as one
e Challenge I: quality
e Challenge Il: scalability

Displays (not projected)

First generation
e CRT: Excellent color, no tiling, inefficient

Second generation
e LCD: Nice color, only four tiles, efficient

e Plasma: Nice color, no tiling, inefficient

Third generation (future)

* OLED: excellent color, tiles ok, flexible,
very efficient

Projectors

First generation
e CRT: Excellent color, tile ok, not bright

Second generation
e LCD: Very bright, bad color temperature

e DLP: Quite bright, nice color, expensive

Third generation

e Laser: Possibly a contender,
... but price must drop

Rear projection

projectors

PC cluster

Taxonomy
tiled displays

VA o 2

flat panel CRT projectors

/ \ / \
plasma LCD front

Princeton Display Wall

Seamless Display

e Geometric alignment
e Blending

e Color balance _ - _
2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Geometric Alignment

Perfect alignment is difficult
e Many degrees of freedom

e Lens distortions

Solutions
e Calibrated camera (UNC and MIT)

e Uncalibrated camera (Princeton)
— Uses global optimization

Geometric Alignment

[Chen2000]

Geometric Alignment

 Pre-warped imagery

LCD lens

projector

/
-

screen

Geometric Alignment

Geometric Alignment

Challenge: how do we use the
results of automatic alignment?

LCD lens

projector

/
-

screen

Geometric Alignment

Challenge: how do we use the
results of automatic alignment?

g~ =

Still images: use texture mapping

3D-models: use a matrix transform
MPEG video: decode pixels block-by-block

Blending

} overlap region

sScreen

Blending
Problem: black + black = gray

SCre

)

n

Blending: projector mount

Color Balance

Projectors produce different colors
e Different lamps

e Lamps degrade at different rate
* Wide variation, even in same model

Color Balance

[Majum

der2000]

Color Balance
Challenge: often view-dependent

projectors

Screen

Color Balance
Challenge: often view-dependent

projectors

Screen

Color Balance
Challenge: often view-dependent

projectors

Screen

Color Balance
Challenge: often view-dependent

The ideal screen:

v Transmissive
v Diffuse
v Black

B—
i it

¢
R
O
-l
S
v
or=
O
-
o
4
N

24 Projectors

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Campus center installation

Summary

Commodity components drive design.

e Tiling projectors is a viable approach
for scalable, high resolution display

e Can build an inexpensive display wall

« Seamless tiling remains a challenge

DOE/ASCI-Lab Research Efforts
@ Sandia National Laboratories

Constantine “Dino’Pavlakos

Scalable Rendering Team, Sandia National
Laboratories
Brian Wylie, Ken Moreland, Vasily Lewis, David

Shirley, Milt Clauser, Carl Diegert, Dan Zimmerer,
Carl Leishman, Jerry Friesen, Jeff Jortner

Sandia
National . ~
Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Z 0 0 1 EXPLORE INTERACTION
for the United States Department of Energy under contract DE-AC04-94AL85000. AND DIGITAL IMAGES

Early efforts - “Horizon” Cluster

Sandia’s early R&D graphics cluster
16 SGI 320’s 450Mhz Plll, 512MB RAM

Cobalt Graphics [1.75Mtri/sec with
Vertex Arrays]

Unified Memory Architecture (no
special code developed)

Windows 2000

GigE Interconnect [Foundry
Switch/Alteon NIC’s]

Poor interconnect performance
[270Mb/sec, no jumbo packets]

Cost was ~$200K

2 0 0 1 EXPLORE INTERACTION
3

AND DIGITAL IMAGES

Rendering and Sorting

Image

Outputﬁ
== @ Q =

4X4 Clipping Rasterization Framebuffer
Transform and

Texture Mapping

CGRARH
z O O I EXPLORE INTERACTION

AND DIGITAL IMAGES

Tiled vs. Single / Composite Displays

Tiled Composite
(sort-first/middle) (sort-last)

Display(s)

Parallel sort-first rendering

Useful for high-resolution, tiled
display walls

Higher frame rates possible

Can leverage temporal coherency

Tougher load balancing (data per tile
can vary significantly)

Communication traffic proportional to
data size (data migrates to node(s)
associated with each display tile)

Triangles/sec
(Million)
o N BN »

_

1\ 2\2 4\4 -
Processors (Display\Shadow) -
2 0 0 1 EXPLORE INTERACTION

Early results: TDL performance on 1 million polygon dataset, Horizon cluster Iy o e

Parallel sort-first rendering
“TDL” library

#include <tdl.h>
void main(int argc, char *argv[])

TDL_Init(numXtiles,numYtiles,myX,myY);

TDL_SetGeometry(coords,normals,colors,
triangles,numTriangles);

while (1) {

TDL_SetViewMatrix(vMatrix);
TDL_GetGeometry(&coords,&normals,
&colors, &triangles,&numTriangles);

Op;t.e.nGL Calls
}

}

-Simple API; leaves rendering specifics up to the application
-Handles displays with overlaps or mullions

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

«Sort-first work giving way to WireGL & Chromium

Parallel sort-last rendering

Back-end image compositing
Good load balancing characteristic
Performs well on large datasets

Communication scales with image
size (each node computes full
resolution image)

Low frame rates (compositing
overhead)

(Millions)

Triangles/sec

4 6 8 10 12 14 16
Number of Processors

Early results: PGLC performance on 26 million polygon dataset, Horizon cluster Z 0 0 1 EXPLORE INTERACTION
AND DIGITAL IMAGES

Parallel sort-last rendering
“pglc” library

#include <pglc.h>
void main(int argc, char *argv[])

{
pglc_Init();
pglc_Wincreat(width,height,xPos,yPos,title);

while (1) {
Computation

Op;anGL Calls

frar.neBuffer = pglc_Flush(COMPRESSED_TREE);
}

}

-Simple API; leaves rendering specifics up to the application
«Allows for implementation/use of different compositing schemes

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

ViCky - Sandia’s Big Viz Cluster

RiCk - Render Clustexcost ~$500K)
64 Compaq Professional Workstation SP750
Pentium Ill Xeon 800 MHz processor
nVidia GeForce graphics - Elsa ERAZOR:)82 MB DDR
512 MB memory (32 GB total)
18 GB, 10 krpm local disks (1.2 TB total)
Will drive a 16Mpixel tiled display wall

Feynman - Data Cluster
72 Compaq Proliant 1850R computers (older)
Dual Pentium Il 400-MHz processors
512 MB memory (37 GB total)
4x9.2 GB, 10 krpm local disks (2.6 TB total)
+ some network RAID
>3.7 GB/s bandwidth (disk to memory)

Upgrading with ~44 1/0 & Communication Nodes
and ~20TB disk (multiple fibre-channel RAIDS)
Dual boot - Windows 2000 and Linux
Servernet-2 interconnect (changing to Myrinet 2000)
Gig Ethernet / 100-MHz Ethernet external connects 4010) Prpsm—"

AND DIGITAL IMAGES

PGLC results on the big cluster

Demonstrated 300 Million triangles per
second”
* 470 Million triangles in less than 2 sec per frame

* >100 times the performance of SGI IR pipe (for our
applications)

e Using 64 ViCky rendering nodes
* Sort last, 1024x780 images
* Windows 2000 OS

Sort Last Scalability

*Some 1ssues with image correctness
and the 470M-triangle data.

More PGLC results

7 million-triangle dataset 30 million-triangle dataset

»

~
S

(Millions)
¢ (Millions)

Triangles/se

Y Y Y Y Y Y 16 24 32 40 48 56 64

24 32 40 48 56 64
Number of Processors Numberof Processors

Triangles/sec

469 millio n-triangle dataset

—_
(=2
(=}

rd

[}
(=}

(Millions)

Triangles/sec

=
o

Triangles/sec

(=)

16 24 32 40 48 56 64 16 24 32 40 48 56
Numberof Processors NumberofProcessors

2 0 0 1EXPLORE INTERACTION

AND DIGITAL IMAGES

470-Million Triangle Data

SC99 Gordon Bell
PPM dataset -

Art Marin et al,
LLNL

Isosurface —
Dan Schikore,
CEI (previously
LLNL)

Images covered by
LLNL: UCRL-MI-
142527.

Optimization Tidbits

Frame Read-back ...use optimal format for Open@IReadPixely)

[observed performance differences as much as 30X]
« Color GL_BGRA GL_UNSIGNED_BYTE
o 24-Depth GL_DEPTH_COMPONENT GL_UNSIGNED_INT
o 16-Depth GL_DEPTH_COMPONENT GL_UNSIGNED_SHORT
Use of run-length-encoded/active-pixel-encoded images
* RGBA 4-tuples treated as single 4-byte quantity

e 10-15X reduction in early composition stages
Composite compressed data directly
e Save compression/decompression at each step

Observed TOTAL overhead reduction ~64% (500ms to 180ms for 64
nodes at image resolution of 1024x768)

Z 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

We are working on sort-last approaches
for tiled-displays

Sandia/California’s Power Wal
4x3 tile-display
Approximately 16 Mpixels

Sandia/New Mexico Facility
Incorporates 16-tile display
Planned for 48-tile, 3-screens

2 0 0 1EXPLORE INTERACTION

AND DIGITAL IMAGES

Volume Rendering

Projection-based: Uses graphics
hardware

Cells sorted and projected onto image
in order from back to front, with
blending

High frame rates possible

Client/Server architecture
e Desktop delivery

e Server easily swapped out
Approximate sorting for best
performance; integration of “Z-

sweep” or “BSP-XMPVO” for exact
sort

Multi-display load balancing issues

Early results: 350,000 unstructured
hexahedral cells per second

TNTVol on 700,000
hexahedral cells

More Clusters

Sandia/NM testbed cluster (cost ~$150K)

 16-node Dell-620/nVidia+Matrox cluster, Myrinet or
Servernet2

Sandia/CA cluster (cost ~150K)
* 16-node Dell-620/nVidia cluster, GigE/Myrinet

New ~64-node cluster (“Europa”)
e One each for classified/unclassified (with “RiCk”)

VIEWS Partnerships

e Academic partnerships (Stanford, Princeton, ...)

e CEI -- under ASCI/VIEWS tri-lab contract to parallelize
EnSight product, including for cluster-based graphics
architectures

e Kitware -- under ASCI/VIEWS tri-lab contract to develop
parallel/distributed VTK that will run on cluster-based
graphics architectures

e Parallel, Distributed OpenGL Rendering API/Engine effort
e Linux graphics drivers (nVidia, Precision Insight)
e Scalable Visualization RFP

Scalable Visualization Software

Terascale Data

Scientific Data Management SW

2 2 . .
VIS Applications

VIS Applications | (yjsIt, ParaView, etc.
(EnSight, TRex, etc.)

“Chromium” parallel rendering API

OpenGL (DirectX??)

Graphics HW Drivers

Displays (desktop, walls, etc.)

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Los Alamos Cluster Visualization

Allen MPherson
Los Alamos National Laboratory

Agenda

Volume rendering overview

Cluster-based volume rendering algorithm
Back-of-the-envelope analysis

Cluster architecture

Software environment

Recent results

Future work

Ne
<
e
4]
Q
>
"
e
)
=
m
o
>
§2.
e
<
%

3-D grid or mesh

Y L L L L L L L L L L S

I
I
I
I
l
I
I
I
i
/

A A AR A A L e

e Structured

Data sampled on grid
Samples called Voxels”
Many grid topologies

e E.g. rectilinear

e Unstructured

How is Volume Data Generated?

Sensors
e CT scanners

* MRI

Simulations
e Fluid dynamics

Measured data
e Ocean buoys

Looking at Volumetric Data

Constant value surface
 |sosurface algorithm

Polygonal data generated
Don’t see entire volume

Polygons usually
generated in software

Polygons rendered with
hardware

Looking at Volumetric Data

True volume rendering

e Treat field as semi-
transparent medium

e “blob of Jello”

e Can see entire volume

Transfer Functions

Indirectly maps data to
color and opacity

Allows user to
interactively explore
volume

Software Volume Rendering

Ray casting

Image order algorithm

Trace ray through image
plane and into volume

Sample volume at regular
intervals along ray

Combined samples yield
ray’s pixel value
(compositing)

Hardware Volume Rendering

Software approaches are too slow
* Interactivity required for exploration

Use texture mapping hardware to accelerate
e Textures emulate the volumetric data

» Hardware lookup tables accelerate transfer
function updates

Use parallelism for large volumes (multiple
hardware pipes)

Texture Mapping Approach

Texture is volume
e 3-D texture

e Many 2-D textures

“Cleave” 3-D volume
with slice planes

Composite resultant
images in order

Essentially parallel ray
casting

Early Experience at Los Alamos

Problem: visualize large volumetric data
(1024°) interactively

Use texture-based approach for speed
Single pipe can’t handle large volumes

Use multiple pipes in combination to rende
large volumes

Large SGI-based Solution

128 processor Onyx 2000
16 Infinite Reality graphics pipes
1 Gvoxelvolume rendered at 5 Hz

Want to accomplish the same goal (or better)
using less expensive, commodity-based,
solution

Our volumes will get bigger—8&

Cluster-based Solution

Algorithm similar to large SGI solution
e Break volume into smaller sub-volumes

e Use many PC nodes with commodity graphics cards
to render sub-volumes

» Read resultant images back and composite in
software using interconnected cluster nodes

» Organize as pipeline for speed

Algorithm Schematic

el

Transformation

E[EEe
Sub-Image

l Composited

Sub-lmages
Compositing

Traffic

Serial vs. Pipelined

Serial Frame 2 Frame 1 Frame 0

e —

Frame Time

Pipe[ine Frame 2 Frame 1 FrameO

Latency Frame

Time

Pipeline Issues

Frame time = time of longest stage
* Need to balancestage times

Deep pipelines can induce long latency
» Keep pipelines short

“Circularity” of pipeline is troublesome
e Communications programming is tricky

Back-of-the-Envelope

Analyze feasibility

e Examine “speeds and feeds” of each component

e Test against theoretical numbers wherever
possible

* Won’t guarantee success, but gets us in the
ballpark

Cluster Components

Initial hardware selections
e CPU: dual Intel

e want commodity PC

e Graphics: Intense 4210
e using 3-D texture

e Network: GIG-E

e Fast commodity network
e Reusable at completion of project

Bounding Parameters

Graphics card texture memory
e Dictates size of volume that can be rendered

Graphics card fill rate
* Dictates speed of actual volume rendering

Framebuffer readbackate
» How fast rendered sub-frame can be read to host

Network speed
* How fast images can be moved through the cluster

Bounding Parameters (theory)

Node

CPU (2) Graphics Card
240 Mpix/sec fill

Texture Mem
128 MB

AGP-2

)

512 MB/sec

§ GIG-E 125 MB/sec

Bounding Parameters (tested)

Node

CPU (2) Graphics Card
240 Mpix/sec fill

Texture Mem
128 MIB

AGP-2

)

280 MB/sec

1 GIG-E 55 MB/sec (MPI)

Data Magnitude

Volume n3

Limit 1: Rendering

240 Mtex/sec
e At 5 FPS budget ~50 Mtex/frame

* 1-1 pixel-voxel gives 50 Mvoxel volume

e ~512x512x256 (64 MB through TLUT)
32 nodes gives 2 Gvoxel volume

e Theoretical number

e Conservatively use %2 of theoretical
e Back to 1 Gvoxel volume

Limit 2: Image Readback

280 MB/sec AGP-2 tested

e Assume that we render into a 1024% image

e Matches volume resolution to screen resolution
 RGBA gives 4 MB/frame

e 280/4 =70 FPS
* Well within budget

Limit 3: Network Performance

55 MB/sec tested on GIG-E with MPI

* 4 MB (or smaller) images

* 55/4 =11 FPS

e Within budget, but...
* May need to transport image multiple times per
frame (render, composite, display)

* 5 FPS allows only two image moves—may not be fast
enough

Limit 4: Volume Download

Only required for time-variant data
e 64 MB volume from Limit 1

e At 5 FPS requires 320 MB/sec download

e Tested AGP-2 limits to 280 MB/sec

e Would need matching 1/0
* 320 x 32 nodes: 10 GB/sec aggregate |/0O

Balanced Pipeline Stages?

Ul

e Very fast, small data transfers (transform, TLUT)

Render
e 200 ms/frame + 4 MB image transfer

Composite

e Composite operations + 4 MB image transfer
Pipeline forces equal stage lengths
Network time need to be considered

Los Alamos KoolAid Cluster

Cluster Compute Hardware

36 Compaq 750

e Shared rendering/compositing nodes
* 4 nodes used for Ul and development
e Dual 800 MHz Xeon

e 1 GB RDRAM per node

e [ntel Pro-1000 GIG-E card

Cluster Compute Issues

Intel 840 chipset allows simultaneous:
e AGP transfers

e Network transfers

e CPU/memory interaction

Some problems with chipset

e Poor PCl performance when compared to
Serverworks—slows networking

Cluster Network Hardware

Extreme GIG-E switch

e Supports jumbo packets

e Full speed backplane

e Simultaneous point-to-point transfers
* Intel Pro-1000 GIG-E cards

e Tested for this application

Cluster Network Issues

GIG-E isrelativelyslow and inefficient
e Protocol processing eats CPU

o Extreme switch is expensive, but nice

Need to test actual communications patterns
e Simple “netperf” style is not enough

e Test with communications library to be used (MPI)

Numerous driver issues—test, test, test!
All GIG-E equipment is re-usable

Cluster Graphics Hardware

3Dlabs Wildcat 4210

e 128 MB texture memory
e 128 MB framebuffer memory

e 3-D texture hardware

Cluster Graphics Issues

Sub-optimal compared to recent alternative
e Poor fill rate

e AGP-2 interface

» Expensive: ~$4000/card

e Lacks nifty new features (DX8, etc.)

Can clearly do better next time

Software Environment (OS)

Windows 2000

e Not a religious issue with us

e Only OS with driver support for Wildcat 4210
e Best bet for drivers (commodity cards)

* Most application code portable to Linux

e Can experiment with DX8 features later

Software Environment
(Rendering)

OpenGL

e 3-D textures for volume rendering

* Not in pre-DX8 versions from Microsoft
 Solid support on Wildcat 4210

Softwarecompositing
e Have CPUs with nothing to do

e Completely general for future experimentation

Software Environment
(Networking)

MPI

e Argonne MPICH implementation

e Easy to learn and use

e Implementation adds opaque layer which makes
troubleshooting difficult

e A few Win2K issues

» General lack of tools (e.g. log viewing)
e Tag limit of 99 (MS licensing??)

Results

To be presented atSiggraph2001

e See www.acl.lanl.gov/viz/cluster for latest

Future Work

Clusters of task-specific mini-clusters
e Rendering, compositing, 1/0, display

e Possibly specialized interconnect between clusters
e DVI
 Fiber Channel
e Optimal interconnect for individual mini-clusters
* Myrinet-2000
e Simple 100 Mb Ethernet

Future Work (Rendering Cluster)

Take rendering cluster to 64 nodes
e Still Compaq 750s

 New nVidia/ATI cards when 3-D texture-capable
e May use Microsoft DirectX 8 vs. OpenGL

e Doesn’t need high speed interconnect

e Just transforms and TLUTs

» Does need high speed connection to compositing
cluster

Future Work (Compositing
Cluster)

64 1U compositingnodes
e Dell PowerkEdge 1550

e Single 1 GHz PIII
e Serverworks chipset

* |nterconnected with Myrinet-2000

e 2 Gb/sec interconnect
* Much faster than GIG-E, much less CPU overhead

e May run Linux

* No need for Win2K since no graphics cards

Acknowledgements

John Patchett
Pat McCormick
Jim Ahrens
RichardStrelitz

Stanford’s MultiGraphics:
Scalable Graphics
using
Commodity Components

Greg Humphreys

Stanford University

Overview

Chromium: Stanford/DOE visualization cluste

WireGL: Software for cluster rendering
e Application transparent support for tiled displays

e Parallel interface for scalable performance

Lightning-2: Image composition network
Interactive Room
e Mural

e Table

MultiGraphics Goals

Provide scalable graphics on commodity part
* Processors

* Graphics Accelerators

e Networks

* Displays

e Other (image compressors, input devices, APIs)

Software support for rendering on clusters
e “Transparent” tiled displays

e “Obvious” parallel applications

Hardware support for rendering on clusters
* Image composition

Chromium Cluster

32 nodes, each with graphlcs

Compaq SP750
e Dual 800 MHz PIIl Xeon

* 1840 logic
e 256 MB memory
e 18 GB disk

64-bit 66 MHz PCI
e AGP-4x

Graphics
e NVIDIA Quadro2 Pro with DVI

Network
e Myrinet (LANai 7 ~ 100 MB/sec)

E INTERACTION

Cluster Rendering Software Goals

Remote rendering: as efficient as possible
* Well designhed network protocol

Transparent support for tiled displays
e Sort-first distribution of graphics commands

e Efficient state management
Drop-in OpenGL replacement
e Support existing applications without modification

e Familiar immediate-mode API

Parallel interface for scalable rendering rates
» Controlled order of execution —=SICGRA -

Issues

Flexibility

e Heterogeneous computers/graphics/operating systems

e Continual upgrades of graphics and networks

e Ratio of components

Programming interface
e Scene graph or retained mode

* Immediate mode (time-varying)
Parallel OpenGL
Communication and load balancing
e Granularity and sorting primitives

Sort-first tiled
e Network substrate

WireGL’s View of Cluster Graphics

App App

Geom Geom
Rast Rast

Tex Tex <—>[Mem]
Frag Frag <—>[Mem]

e —— e e

z . (SEPIA,
Dis p Dis P Lightning-2,

Software)

« Raw scalability is easy (just add more pipelines)
» WireGL exposes that scalability to an application

Network Graphics Streams

Familiar model: X, GLX, VNC, NetMeeting

(client)

@ >

Application

(server)

WireGL Protocol

1 byte per function call

gl Col or3f (1.0, 0.5, 0.5);
gl Vertex3f (1.0, 2.0, 3.0);
gl Col or3f (0.5, 1.0, O0.5);
gl Vertex3f (2.0, 3.0, 1.0);

e o
nhooouhounooo

[
-

COLORS3F

VERTEX3F
COLORS3F
VERTEX3F

12 bytes

1 byte

WireGL Protocol

1 byte per function call

gl Col or3f (1.0, 0.5, 0.5);
gl Vertex3f (1.0, 2.0, 3.0);
gl Col or3f (0.5, 1.0, O0.5);
gl Vertex3f (2.0, 3.0, 1.0);

e o
nhooouhounooo

[
-

COLORS3F
VERTEX3F
COLOR3F Opcodes
VERTEX3F

Driving Tiled Displays

WireGL creates a distinct stream for each server

Renderer Renderer

Virtual
Renderer

Other possibilities Renderer
e Use network supported broadcast

* Arrange servers in a ring network

One-to-many generalizes to many-to-many

Application

Sort-first Stream Specialization

Update bounding box per-vertex
Transform bounds to screen-space
Assign primitives to tiles (with overlap)

~ =

Lazy State Updates

Only send state which is required by render

glTexImage
glBlendFunc
glEnable

glLight
glMaterial
glEnable

Output Scalability Results

Marching Cubes

o
3y

)]
wd
1]
| -
Q
£
1]
—
LL
D
2
-
0
Q
o

&
o

1x1 2x1 2x2 4x2 4x4 8x4
Tile Configuration

B Broadcast [WireGL

Output Scalability Results

NURBS Tessellator

o
3y

)]
wd
1]
| -
Q
£
1]
—
LL
D
2
-
0
Q
o

&
o

1x1 2x1 2x2 4x2 4x4 8x4
Tile Configuration

B Broadcast [WireGL

Output Scalability Results

Qua/(e /: Arena

o
3y

)]
wd
1]
| -
Q
£
1]
—
LL
D
2
-
0
D
o

&
o

1x1 2x1 2x2 4x2 4x4 8x4
Tile Configuration

B Broadcast [WireGL

100=

i’:\ -

l()()

Input Scalability

Allow multiple submitting clients
We need to order their graphics commands!

Application

W

Application

il |

Application

|
E———1
Application Renderer

Parallel OpenGL API

Introduce new OpenGL commands:

°J Barri er Exec Igehy, Stoll, Hanrahan, The Design

of a Parallel Graphics Interface,
* gl Semaphor eP SIGGRAPH 08

* gl Semaphor eV

Express ordering constraints between
multiple independent graphics contexts

Don’t block the application, just encode thelfi
like any other graphics command

Ordering is resolved by the graphics servers

Input Scalability Results

March — — —Ideal

pipes=1

pipes=2
—t— pipes=4
—— pipes=6
== nipes=8
—— pipes=12
—— nipes=16

o))

=

&
Q
/)]
S—
/)]
—
=
=

N

o
-

8 12 16
Clients

Input Scalability Results

Nurbs — — — Ideal

pipes=1

pipes=2
—t— pipes=4
—— pipes=6
== nipes=8
—— pipes=12
—— nipes=16

o 6
Q
/)]
& 4
=
= 2
0

0 4 8 12 16
Clients

Input Scalability Results

Hundy — — — Ideal

,/ pipes=1

pipes=2
—t— pipes=4
—— pipes=6
== Dipes=8
—— pipes=12
—— nipes=16

e O
o O

Q
Q
‘_S_Q
(/)]
= 40
=
=

N
o

0 4 8 12 16
Clients

Image Reassembly

Not everyone has a large tiled display
Single tile servers limit scalability
Single tile servers limit load balance

Must provide flexible image tiling
e Image tile sizes not tied to server’s framebuffer

e Multiple tiles per server

 Number of tiles unrelated to actual output device

Need an image reassembly phase

A “Complete” WireGL System

PC C

Net
Application > Gigabit Rendering Image
Nodes Network Nodes Reassembly
RS

PC PC A
v S

PC PC
P

Four
Clients Servers

Lightning-2 Module

DVI = Digital Visual Interface

v VvV VY

DVI inputs | >

DVI inputs
daisy-chained

X w

~

~
/ Compositing unit
Y VY YVY VYV VY

Input unit

z 0 0 1EXPLORE INTERACTION

AND DIGITAL IMAGES

Framebuffers

Pixel chain

Lightning-2 Prototype

\i'i,r

=T 12. 2000

Image Composition

frame

buffer

frame

buffer

frame

buffer

frame

buffer

~

Current functions

Image reassembly (tiles)
Window-system stacking
Chroma-keying

Depth composite

z 0 0 1EXPLORE INTERACTION

AND DIGITAL IMAGES

Scanline Switching

Routing information embedded in the image
Unit of mapping is a one-pixel-high strip

Display # plus X,Y Coordinates Width Pixel Chain #
23 bits 11 bits 4 bits

———

Strip Header: 2 pixels (48 bits)

Example: 16-way Tiling of One Monito)y

Strip
Headers

Framebuffer 1

Reconstructed
Image

Framebuffer 2

z 0 0 1EXPLORE INTERACTION

AND DIGITAL IMAGES

Scalable Lightning-2

15
=
(=5

==
—

Stanford iSpace

- 1_’_ il -
Multi-Task g
Multi-Person
Multi-Device
Multi-Modality
Multi-Place

Interactive Conference Room Table

Interactive Mural

18’ x 4.5’ Touch-sensitive screens (SmartBoards)

Interactive Mural

- 6’x4’,64 DPI

MultiGraphics Summary

Scalability with commodity technology

Recent breakthroughs
e Hardware:

e Fast graphics, advanced features
e Adequate networking
» Core logic

o Software:

e Transparent support for tiled displays
e Parallel interface with ordering control

Enables large class of new applications
e Ubiquitous high performance

e Advanced display environments

Early Experiences With
An Inexpensive Scalable
Display Wall System

Display Wall Project
Computer Science Department
Princeton University

2001..

le ?x/year during
' the last few years

I
|
I
o 4x/year during
the last few years

2x / 18 months
' (Moore’s law)

~10%/year

~5%/year

Traditional Multi-Projector Display

Custom or high-end components
Smooth transition » High-end graphics machine
by edge-blending High-end graphics accelerators

e Fast internal network

e High-end projectors

e Hardware edge-blending

* Mostly front projection

e Server I/0 devices

Research prototypes
High-End SGI e PowerWall (U. Minnesota)

| | e Same as above, but rear projection
/O /0 without edge-blending

Princeton Display Wall

Multiplicity of commodity parts
e Commodity PCs

e Cheap 3-D graphics accelerators

e System area network
e Portable LCD/DLP projectors

DD
G| |G

DD
G||G

e Software/optical edge-blending

P PC PC PC

C
L e Rear projection

System

Area Network e Commodity PC |/0O devices

Advantages
* Inexpensive

PC

* Track technology well

Research Challenges

Construction
e Scalable resolution display

e Scalable, inexpensive architecture

e Software tools for existing and new applications

e Applications

Usability

e Natural user interfaces for scalable display systems
e Guidelines for visualization on large-format displays

e Scalable resolution content

: Storage
i server :

RF input devices
Microphone

& n

e i g |
Eh!”ﬂm

AT&T Lab
visualization group

Behind the Wall

A Recent Photo

™ ;IJ._'.
iﬁt-: u".‘
L

b e TR

KR
it 2
i) o

-

Automatic Alignment
(Y. Chen, A. Finkelstein, D. Clark, K. Li)

UNC and MIT approaches
require calibrated cameras
to do image transformation

Our approach

e Use one or more cameras to
detect misalignments

e Adjust projective matrix
iteratively

e Pre-warp projected imagery

Automatic alignment

Uses inter-projector geometric constraints
very much like rigid-body constraints
point matches = bolts
line matches = struts

Edge Blending

screen

Problems with projectors |-
 black + black = gray

e bad pixels at the boundary
of the projected image

Solution region

e Use aperture moaulation
to do optical blending

e A blending frame on the
projector mount

e Option: use uncalibrated
camera feedback to do
tuning for better blending

Blending: projector mount

Tools for Porting Applications
(Y. Chen, Z. Liu, T. Funkhouser, R. Samanta)

Custom-designed (Still Image Viewer)
e Distributed server and command controller

Distributed primitive approach
* OpenGL: Intercept at DLL level and execute remotely

e VDD: Intercept at device driver and execute remotely

Synchronized programming model
e Runtime synchronization (Building Walkthrough)

e System call synchronization

* Replicate and update camera and perspective

2001..

Exploring the Mandelbrot Set

Virtual Display Driver
(Y. Chen, Z. Liu)

Multibrowser . Filner)

= ST Ty |

T e —————
3 !-.

ITFIFAT

9
Q.
=
o
X
)
| -

O
i
=
O
O
X
()

L,
O
N
| -
o
| &

L
S
| -
>
Vg

Walkthrough of Soda Hall

Architectural Walkthroug

[
L
3

Parallel Rendering
(R. Samanta, J. Zheng, T. Funkhouser, K. Li, JP Singh)

Challenge
* Load balanced with minimal communication requirements

Our approach
e K-D tree space partitioning (sort-first) at object level

e Replicate data base on every node
e Coordinate local and remote rendering pipeline

e Communicate and synchronize using VMMC

Graphics cards (fast FB read/write) Projectors

Naive Rendering without Load-
Balancing

.

K-D Tree Partitioning for
Load Balancing

Parallel MPEG-2 Decoding
(H. Chen, K. Li)

Coordinate PCs

Minimize communication
requirements %

A splitter runs at > 100fps i

System
A fast MPEG-2 decoder [Area Network
e 720p at 50fps on 733Mhz P-lll
PC

Low aggregate bandwidth i
requirement MPEG-2 stream

DDDD
G||G G

PC PC C

i

c
O
"
=
O
7
o
—
>
-
o
<
O
LLl
Q.
=

Orion MPEG

Multi-Channel Immersive Sound

Spatializedsound

Coordination
e Coordinate 2 x 8 channels of sound

* 16 speakers (2 subwoofers)
Communication
e Currently communication with a remote client

* Will render spatial sound in parallel

2001..

User Interface

Camera-tracked input

e Triangulation of two video
images

e Wand and hand

Voice recognition

e Use commands to drive
applications

e Implemented a circuit viewer

Other handheld input

e Gyroscope mouse

e Palm devices

camera

b\

F

>

Experiences in Digital Design

Must consider “frameless” design

Allow multiple groups of people to view
Life size makes a big difference

No need to rapidly change images

Font sizes can range from 2 to 600 points
Spatial sound is important for story-telling

';h.""\ul""h
[

Early Experience Summary

Build a fun toy, people will play with it

It is possible to build an inexpensive, scalable
display wall system
e Overcome commodity components’ features

Wall-size display systems will lead us to rethink
software and content creation

e Algorithms that trade space for less communication

e Content design

* Multiple viewers

This is just a beginning

Princeton Display Wall Team

George

Tzanetakis o —
StefanosAl ik e 2 : Jﬂf‘?\s_
BENERELTS S DGUQ__PFE{m‘: Essigssen | ¥ seens Bunkhousers

] -—hmm“
i s A

Allison
Klein R C SO Finkelstein |

Scalable multi-user display surfaces
with blending and compositing

Alan Heirich, Compagq
SantiagoLombeyda Caltech

with contributions from Laurent Moll, Mashand,
Dave Garcia, Bob Horst (Compaq) and
Ravi Ramamoorth¥Stanford)

endering computers

R
1

A
'
U
=
Y
-
=
(")
>
S
o
oo
©
g
r
s
s
U
i

Scalable display surfaces

ndermg computers
..1024..

Scalable display surfaces

endermg computers
..1024..

Display
surface
abstraction

Display surface abstraction

Display surface abstraction

Display surface abstraction

Multiple display surfaces
per supercompute

Multi-user visualization environment

_—

Multiple sessions (surfaces)
Multiple users (views) per session CO0 T uane mrepscron

Application requirements

» Scalable display surface
* Independent viewports

— dynamic rescaling
» Extensible compositing

* Blending & Porter-Duff operators
— blending = compositing + reordering
* Interactive end-to-end latency

Extensible compositing

Depth compositing ‘
visual simulators = ‘ =
isosurface rendering g™

Extensible compositing

Volumetric blending
non-commutative
Porter-Duff operators

Santiago Lombeyaa,
Russ Jacob &
Scott Fraser

Depth compositing |
visual SImulators ’1_ _

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Extensible compositing

Volumetric blending
non-commutative
Porter-Duff operators

Santiago Lombeyaa,
Russ Jacob &
Scott Fraser

Depth compositing s
visual simulators -E_

isosurface rendermg o

Photo-realistic
image projections

SIGGRAPH 2000
Agrawala, Ramamoorthi,
Heirich & Moll

Others ...

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

To switch or to mesh?

N-cwz ™

; svicd
links
nopooooo

OUTPUTS
cost = O (links)

To switch or to mesh?

N- o~z ™

\ Switched
N—E—— e
IJEEE links
N ——

— //70// \b\

dooooooo gooooooa

OUTPUTS OUTPUTS
cost = O (links)

To switch or to mesh?

Switched
O (m+n)
links

/4

N-cwz ™
N- o~z ™

I

dooooooo gooooooa

OUTPUTS OUTPUTS

cost = O (links)

m,n mesh (mn) switched (m+n)

128,32 4096 16

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

1024,128 131,072 1152

A dynamic mapping problem

* Physical topology != logical topology

— except depth compositing (commutative operator)
— defines a graph embedding problem
— intrinsic to every distributed computation

» Logical topology is a compositing pipeline

— embed pipeline graph into physical network/switch
— need to guarantee contention-free routing

 Dynamic mapping = Hamiltonian circuit

— solution for Clos networks (e.g. Myrinet, Quadrics)

— published PVG2001
http://ww. gg. cal t ech. edu/ pvg2001] -

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Pipeline abstraction

(AxB) (...) (AxB)x(...)

high latency
sequentialcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

high latency
sequentialcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

high latency
sequentialcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

high latency
sequentialcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

high latency
sequentialcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

high latency
sequentialcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

high latency
sequentialcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

high latency
sequentialcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Pipeline abstraction

(AxB) (...) (AxB)x(...)

interactive latency
fine grainedcompositing

Dynamic mapping solution

* Symmetric Clos
networks (full duplex)

 Hamiltonian circuit
embedding problem

 Forward mapping
by network address

e Guarantee routability
for any pipeline order in

* Constructive proof, PVYG2001

(Lombeyda, Shand, Moll, Breen & Heirich)

Hardware prototypes

Sepia-2 (2000)
360 MB/s sustained

ServerNet-I1
1280x1024 RGBA 36 Hz

Sepia-1 (1998)
80 MB/s sustained

ServerNet-I
640x480 RGBA 34 Hz

Sepia-3 (2002)

> 1 GB/s sustained

Infiniband
HyperTransport

2048x2048 RGBA 80 Hz

new features

Z 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Untested solutions - Sepia-3

* DVI image acquisition
* Viewport independence

— span multiple display panels
— rescalable in real time

» Soft shadow mapping - display phase
— SIGGRAPH 2000 paper (Agrawala et al)

Scalable volumetric rendering

Ravi Samtaney (simulation), Santiago Lombeyda (visualization)

 Hardest compositing case
— requires dynamic remapping
* Real application

e Small scale demonstration

— theory extends to large networks

NSF TeraVoxelproject
Kilo-Frame/Sec camera
ASCI Center for Simulation of
Dynamic Response of Materials 2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Concurrent shear-warp ray casting

rectilinear
subvolume

rectilinear
subvolume

rectilinear
subvolume

RTViz VolumePro

2 0 0 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

Chromium:
An Open-source
Cluster Rendering System

Greg Humphreys

Stanford University

Motivation

WireGL’s power derives from its flexibility
e Any OpenGL program, plus a parallel interface

e Arbitrary assignment of tiles to servers
* Independently set number of clients and renderers

* Good scalability for different application types

But WireGL has some undesirable restrictions

WireGL *Visualization Server”

Iﬁ\w

Network
Geometry

Render

g

Composite

T

Network
Imagery

WireGL *Visualization Server”

Iﬁ\w

Parallel
OpenGL

Render

g

Composite

T

Parallel
OpenGL

WireGL *Visualization Server”

Composite == Render!

2" W&

Render Render

T

Parallel Parallel
OpenGL OpenGL

Beyond Sort-First

Where does this approach fall short?
Sort-first

e Can be difficult to load-balance

e Screen-space parallelism limited

Extensibility
e Application bolted directly to tile/sort logic

» Sort-first paradigm inherent throughout code

We need something more flexible

Cluster Graphics as Stream Processing

The Visualization Server forms a DAG of nodet

accepts an OpenGL stream

Each node generates and/or
S R

Two available stream operations
e Tile/sort geometry, images, and state

* Render stream, possibly generating imagery stream

Other stream operations?
Other graph topologies?

Chromium

Allow arbitrary DAG’s of cluster nodes

Each node may generate, absorb, or modify ¢
stream of (extensible) OpenGL commands

Nodes are classified into two groups:
e Clients (stream sources)

e Servers (stream transformations or sinks)

Servers can be clients of other servers
Client nodes can be unmodified applications

Server Nodes

Chromium servers are similar to WireGL'’s
* Accept multiple incoming streams

e Resolve parallel ordering dependencies

* Dispatch stream to decoding library

Difference lies in the decoding library
* WireGL’s decoder always renders stream

e Chromium allows arbitrary processing of commands

* Not just “render and display”

Client Nodes

Support existing serial applications
e Trick client into loading Chromium OpenGL DLL

e Treat OpenGL calls like any other stream

e Same arbitrary command handling as the server

Enable parallel applications
e Usually written for Chromium (no user interface)

* OpenGL API available to each node
e Parallel extensions for ordering constraints

e Each assigned a unique ID for OOB communication

Stream Processing

Each node transforms OpenGL streams
Done by “Stream Processing Units” (SPU’s)
Each SPU is a shared library

e Exports a (partial) OpenGL interface

e Usually just dispatch to other SPU’s

Each node loads achainof SPU’s at run time
SPU’s are generic and interchangeable

Example: Parallel Sort-First + Bertha

Server
Client Server Render

Tilesort Readback | Tilesort

Server
Client Server Render

Tilesort Readback | Tilesort

Server

Render

Client Server Server

Tilesort Readback | Tilesort Render

SPU Inheritance

The Readback and Render SPU’s are related

e Readback renders everything except SwapBuffers

Readbacki/nheritsfrom the Render SPU

e Override parent’s implementation of SwapBuffers

e All OpenGL calls considered “virtual”

Other useful SPU’s to inherit from:
e Error (all SPU’s inherit from Error implicitly)

e Pass-through
* NOP

Example: Readback’s SwapBuffers

voi d RB SwapBuffers(void)
{
sel f. ReadPi xels(0, O, w, h, ...);
1 f (self.id == 0)
child.Cear(G._CO.OR BUFFER BIT);
chil d. Barri er Exec(READBACK BARRI ER);
‘ child.DrawPi xels(w, h, ...);
chil d. Barri erExec(READBACK BARRI ER);
1f (self.id == 0)
chil d. SwapBuffers();

}
Note use of barriers
Easily extended to include depth composite

All other functions inherited from Render SP8

Example: Sort-Last Full

Client
Readback Send

Client
Readback Send

Client
Readback Send

Server

Render

Client runs directly on graphics hardware
Readback extracts color and depth

Example: Sort-Last Binary Swap

Client

Readback

BSwap

t

Client

Readback

BSwap

)

Client

Readback

BSwap

T

Client

Readback

BSwap

|

ﬁ"l

Server

Render

Provided Libraries

Network
e Connection-based abstraction, easily ported

Packing

e Create WireGL-protocol network buffers

Unpacking
e Dispatch network buffers to a SPU

e Enables multipass SPU’s (geometry compression)

State Tracking
 Complete OpenGL state

» Very fast incremental differences between contexts

Provided SPU’s

Utility SPU’s
e Error, NOP, Pass-through
e Useful to inherit from

Display SPU’s
* Render, Readback (with depth)

Transmission
e Send-only, Tilesort

* Always at the end of a chain
Specialized
e Binary-swap compositor

Tee
o Useful for “tapping” streams to disk for playback/debugging

Using Chromium

Build graphics supercomputer from a cluster
* Use provided SPU’s

e Use described graph topologies
e Chromium-enabled VTK, MeshTV, PV3 libraries

Experiment with new graph layouts
e Combine existing SPU’s in new ways
Port to other networks

Write custom SPU’s
* Wire protocol extensible

* gl H nt () convention for simple communication

Configuring Chromium

All configuration managed centrally
Configuration requests made over network

Multi-level
e Global (per-cluster)

e Per-SPU type
e Per-node

e Per-SPU instance

SPU’s can discover graph topology

Configuration is scriptable
e Easy scalability experiments

Status and Timeline

Infrastructure implemented and tested
* Packing, unpacking, state tracking, networking

e Support for TCP/IP, Myrinet, file-log “network”
* Win32, Win64, Linux, IRIX, AIX (others coming...)

Configuration “mothership” working

Some SPU’s written and working
 Utilities, Send-only, Render

Alpha release in early Summer (July)
Full release in early Fall (September/Octob

/)

Getting Chromium

Project housed on SourceForge
e http://www.sourceforge.net/projects/chromium

e Mailing lists for announcements, development, users

Open-source release (GPL license)

Summary

Complete framework for cluster rendering
Sort-first/sort-last systems out of the box

Testbed for new cluster rendering algorithm
e New communication topologies

* New graphics stream processing

Enable rapid integration of multiple research
efforts

* Bring research results to applications more quickly

e Make research collaboration easier

